Westinghouse Non-Proprietary Class © 2013 Westinghouse Electric Company LLC. All Rights Reserv #### Outline - Historical overview Westinghouse LOCA Safety Analysis Methodologies - Industry and regulatory drivers for improved realistic (Best-Estimate) safety analysis methods - Introduction to the Westinghouse Full Spectrum LOCA Evaluation Model: - Functional requirements - Major code models improvements and assessment - Approach to the uncertainties - Conclusions # Current (Licensed) Westinghouse LOCA Technology ### Large Break LOCA - $\bullet \ \, \text{Best-Estimate Methods Based on } \underline{W} \text{COBRA/TRAC (PD2)}$ - ASTRUM (2004), CQD (1996) - -Valid from 1 ft 2 (0.093 m 2) to DEG (2 * 4.12 ft 2 (0.383 m 2)) #### Small Break LOCA - Appendix K Methods Based on NOTRUMP (1985) - Typical applications to 8 in (52 cm) only (0.35 ft² (0.033 m²)) ### Intermediate Break LOCA • Not Analyzed, Historically Considered Non-Limiting WCOBRA/TRAC Development History | | W V TTW TO BOVOIODITIONS THOSE TY | |-----------|---| | Year | Development Activity | | 1983 | Obtained COBRA/TRAC (NUREG/CR-3046) for UPI plant appl. | | 1988 | SER on SECY-UPI method (Interim BE method/SECY-83-472) | | 1988 | RG 1.157 "Best Estimate Calculation of ECCS Performance" | | 1989 | CSAU (NUREG/CR-5249) | | →1993 | Improvements and Error corrections to COBRA/TRAC and Development of WCOBRA/TRAC through > 100 SET/IET test simulations | | 1993 | Submittal of Code Qualification Documents (CQD) to USNRC | | 1996 | SER by USNRC for the BELOCA methodology (1996 CQD Method) | | 1998 | SER for DVI Plant (AP600) | | 1999 | SER for UPI-BELOCA | | 2004 | AP1000® ⁽ⁱ⁾ , SER for ASTRUM | | 2005-2010 | Development of WCOBRA/TRAC-TF2 and Full Spectrum LOCATM Methodology and submittal to the US NRC for review and approval | in the United States of America and may be registered in other countries throughout the world. All rights reserved. Unauthorized FULL SPECTRUM LOCA # History of Westinghouse Best Estimate LOCA Methodology - Licensed 1st NRC-Approved Best-Estimate Large Break LOCA (BELOCA) Methodology in 1996 (CQD) - Licensed an Automated Statistical Treatment of Uncertainty Method (ASTRUM, 2004) - Application of ASTRUM in 6 countries in addition to US, (Sweden, Belgium, Spain, Taiwan, Brazil, China) - The Full Spectrum LOCA Methodology now extends applicability to any LOCA: Large, Intermediate and Small Break scenarios: - Full Spectrum LOCA Evaluation Model FULL SPECTRUM LOCA ## Objectives for Full Spectrum LOCA - Development roadmap consistent with recent Regulatory Guide (RG 1.203): Evaluation Model Development and Assessment Process (EMDAP) - Develop assessment strategy for all high and medium ranked PIRT processes across the break spectrum (SB, IB, LB) - -Improve or range models as needed based on assessment results - -Rely on an improved statistical treatment of the uncertainties. Small and Intermediate Breaks Eliminated as a Design Constraint Full Spectrum LOCA PIRT Scenario Identification and Partition LOCA Scenario: . The break size considered includes any break size such that break flow is beyond the capacity of the normal charging pumps up to and including a double ended guillotine rupture with a break flow area two times the pipe A Full Spectrum LOCA Integrated PIRT was developed Significant Improvement to WCOBRA/TRAC, in particular to handle smaller break LOCA scenarios New code version renamed WCOBRA/TRAC-TF2 FULL SPECTRUM LOCA Westinghouse Code Development Overview Coupling with TRAC-PF1(which now replaces TRAC-PD2) Addition of Non-Condensable Transport Capability in the 3D Module of WCOBRA/TRAC-TF2 • Upgrades to several models in both 1D and 3D modules. Improvements include: - A new horizontal flow regimes map - Safety injection condensation and non-condensable condensation suppression models - Enhancement to the core heat transfer package FULL SPECTRUM LOCA Westinghouse Code Assessment Approach • WCOBRA/TRAC was originally subjected to an extensive assessment against Large Break LOCA phenomena: - More than 100 experiments originally used to validate against key WCOBRA/TRAC-TF2 is assessed against the same test matrix for the Large Break LOCA scenario/phenomena to confirm Assessment matrix now augmented with several SETs and IETs to cover SB and IB LOCA and scenario/phenomena • The assessment also includes modeling of standard numerical problems and analytical benchmarks which are available in the literature FULL SPECTRUM LOCA Westinghouse ## Small Break LOCA SETs | Small Break
Process | Test | Comments | | |----------------------------|---|--|--| | Break Flow | EPRI-NP-4556 +additional Marviken Dataset represents more than 3500 points from 40 geom., and 10 facilities, containing data: 13 < P < 2500 psia (172.4 bar) 0 < L < 90.55 in (2300 mm), 0.018 in (0.464 mm) < D < 19.7 in (500 mm). | Available data appears to span
PWR ranges of conditions for
break area, upstream subcooling,
flow quality. (V. Ilic, S. Banerjee
and S. Behling, "A Qualified
Database for the Critical Flow of
Water", EPRI-NP-4556, May,
1986.) | | | Mixture Level | ORNL, Westinghouse G-1 Loop,
GE Blowdown | Data covers PWR expected range
of pressure and bundle power. | | | Horizontal Flow
Regimes | JAERI-TPTF Tests | Horizontal stratified regime transitions predicted according to Modified Taitel-Dukler map. | | | Loop Seal
Clearance | UPTF Loop Seal Tests | Data covers full scale geometry, provides information for range of Jg that covers PWRs. | | FULL SPECTRUM LOCA Wastinghouse Non-Proprieton/Class 3 © 2013 Westinghouse Electric Company LLC. All Rights Reserved. # Small Break LOCA - SETs | Small Break
Process | Test | Comments | |--|---|---| | Fuel Rod Models:
Nuclear Rod
Models Heat
Transfer | Various sets of test data from LBLOCA
assessment
ORNL
INEL Post-CHF Data | Fuel rod models were
assessed and quantified for
large break.
Data representative of
SBLOCA conditions added. | | Steam Generator
Hydraulics | ROSA NC | Prediction of flooding in SG tubes at PWR range of conditions. | | Pump
Performance | Pump Specific Data from LBLOCA | Empirical pump data; assessed for large break LOCA. | | SI Condensation | COSI Tests, UPTF8, ROSA SB-CL-05 | High pressure and Low
Pressure SI condensation. | FULL SPECTRUM LOCA Westinghouse Non-Proprietary Class 3 © 2013 Westinghouse Electric Company LLC. All Rights Reserved # Small Break LOCA - IETs | Small Break
Process | Test | Comments | |--|---|--| | Break Flow, entrainment at
Break – Off Take | LOFT L3 Series
ROSA: 10% CL (side), 5% CL
(side), 2.5% CL (side), 2.5% CL
(top), 2.5% CL (bottom), 0.5%
CL (side) | Single and two-phase critical break flow measurements available. Orientation effect. | | Mixture Level | ROSA: 10% CL, 5% CL, 2.5% CL, and 0.5% CL, Semiscale 7-10D | Range of break sizes.
Vessel inventories and system wide
mass distributions. | | Steam Generator
Hydraulics | ROSA NC
LOFT L3 series | Provides information on system wide
phase separation, primary-secondary
heat transfer. | | Loop Seal Clearance | ROSA: 10% CL, 5% CL, 2.5% CL, 0.5% CL, and additional 5% CL with higher Core Bypass | Provides information on Loop Seal
Clearance phenomena. | | Fuel Rod Models | LOFT (4 tests), ROSA SB-CLs | Nuclear rods.
Clad heatup & PCTs. | | IBLOCAs | LOFT L5-1/L8-2 | A 14 in (356 mm) ACC line Break | FULL SPECTRUM LOCA # WCOBRA/TRAC-TF2 – Sample Results from IETs Assessment – Natural Circulation FULL SPECTRUM LOCA # Westinghouse # WCOBRA/TRAC-TF2 — Sample Results from IETs Assessment — SB-CL-18 # WCOBRA/TRAC-TF2 – Sample Results from IETs – LOFT L5-1: Intermediate Break #### © 2013 Westinghouse Electric Company LLC. All Rights Reserve ### Treatment of Uncertainties - Uncertainty methodology is based on a direct Monte Carlo sampling of the uncertainty contributors similar to previously approved method (ASTRUM), however implementation details have been re-worked to: - Properly address concerns relative to the sample size and variability of 95/95 estimator - Need of providing an adequate coverage and consideration of all break sizes which are considered by the Full Spectrum LOCA EM. Westinghouse Non-Proprietary Class © 2013 Westinghouse Electric Company LLC. All Rights Reserve ### Summary - Westinghouse Full Spectrum LOCA Methodology was submitted to the US NRC on November 2010 for its review and approval. - Licensing expectation: Realistic methods are in line with current regulatory practice and expectations (risk-informed regulatory environment) both in the US and abroad. - Full Spectrum LOCA EM is expected to be aligned with such expectations